FLORIDA SOLAR 💭 ENERGY CENTER

Hydrogen Production via Photocatalysis. Catalysis of O₂ Evolution

Clovis A. LINKOUS,

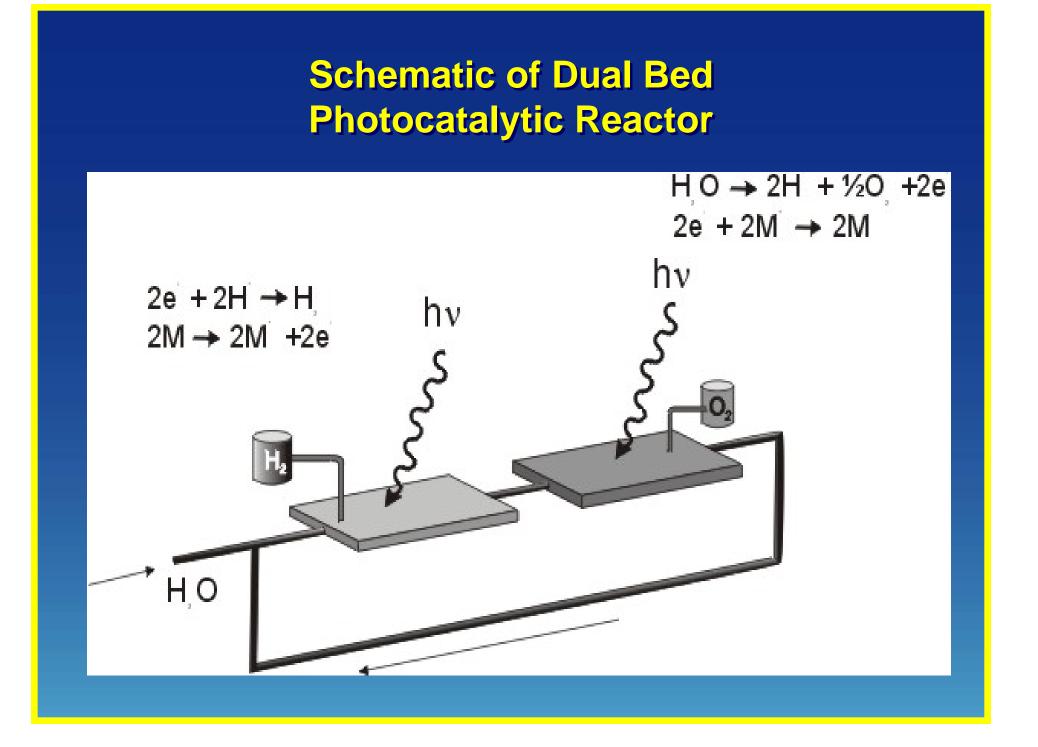
Darlene K. SLATTERY, and Maureen E. MRAZ

Florida Solar Energy Center, University of Central Florida

Cocoa, Florida, USA E-mail: calink@fsec.ucf.edu

A Research institute of the University of Central Florida

Abstract


Photocatalytic O_2 evolution, due to the oxidative decomposition of water, is the half-cell counterpart to H_2 production in a dual bed photocatalytic system. This reaction was studied in alkaline media with TiO₂ as photocatalyst and iodate ion, IO_3^- , as a reversible electron acceptor. Co-catalyst modification using Pt, Ir, and Ni/NiO_x enabled significant rate enhancement. Of the several possible recombination mechanisms and back reactions, the photocatalyzed oxidation of iodide ion by O_2 was found to be most important, consistent with microscopic reversibility considerations. The effect of carbonate ion, which has been shown to promote O_2 evolution in photocatalytic suspensions, was much reduced due to competitive adsorption of IO_3^- .

Keywords: photocatalysis, titanium dioxide, hydrogen production, co-catalysts

Water-splitting expressed as half-cell reactions (alkaline system)

 $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ oxidation

 $4e^{-} + 4H_2O \rightarrow 2H_2 + 4OH^{-}$ reduction

IO₃^{-/I-} reversible redox mediator

 e^{-} acceptor for O_2 evolution:

 $IO_3^- + 3H_2O + 6e^- \rightarrow I^- + 6OH^-$

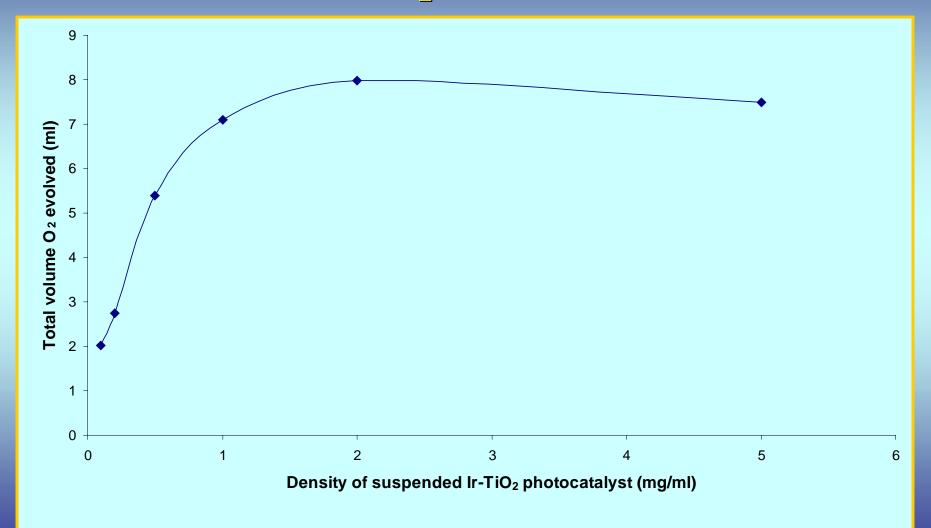
e⁻ donor for H₂ evolution:

 $I^- + 6OH^- \rightarrow IO_3^- + 3H_2O + 6e^-$

Use of co-catalysts in photocatalytic water-splitting

► Ir/TiO₂

► Ni/NiO_x/TiO₂


Co-catalyst preparation method

- Suspend photocatalyst in 1.0 M NaOH
- Add enough metal salt (IrCl₃ for Ir or Na₂PtCl₆ for Pt) to make a 1.0 wt% deposit on the photocatalyst
- Add excess NaBH₄, with stirring, under inert atmosphere
- See ref 3 for method of preparing Ni/NiO_x

Effect of Co-Catalyst and Carbonate Ion on O₂-Evolution from Irradiated TiO₂

co-catalyst	[CO ₃ ²⁻] (M)	[IO ₃ -]	O ₂ evolved (ml)
none	0	0.2	0.40, 0.58
Ni/NiO _x	0	0.2	0.98
Ni/NiO _x	0.5	0.2	0.93
Pt	0	0	0.1
Pt	0	0.2	1.3
lr	0	0	0.08
lr	0	0.2	11.7
lr	0.5	0.2	3.93

Effect of density of Ir-TiO₂ suspension on O₂ evolution

Back reaction studies

Solution	Light	Dark
I ⁻ , KOH, O ₂ (45°C)	0.07 mM	0.13 mM
I ⁻ , KOH, O ₂ , TiO ₂ (75°C)	0.65 mM	0.125 mM

Conclusion

- Ir most effective co-catalyst for O₂ evolution.
- Optimum photocatalyst loading density for suspended powders lies In the 1-2 mg/cm³ range.
- Photocatalyzed O₂ reduction appears to be the most significant loss mechanism.
- Carbonate unable to facilitate O₂ evolution in presence of iodate ion.

References (1)

[1] C.A. Linkous, D.K. Slattery, <u>Hydrogen Energy</u> <u>Progress XI</u>, vol 3, of the 11th World Hydrogen Energy Conference, June 23-28, 1996, Stuttgart, Germany, T.N. Veziroglu, C.-J. Winter, J.P. Baselt, and G. Kreysa, eds., Schoen and Wetzel GmbH, Frankfort am Main, 1996, p 2545.

[2] K. Sayama and H. Arakawa, J. Chem Soc., Faraday Trans. 93 (1997) 1647.

[3] A. Kudo, K. Domen, K. Maruya, T. Onishi, Chem. Phys. Lett. 133 (1987) 517.

References (2)

- [4] M. Grätzel, Acc. Chem. Ris. 14 (1881) 376.
- [5] A. Miller, G. Porter, J. Chem. Soc., Faraday Trans. 1, 78 (1982) 3659.
- [6] J. Kiwi, M. Grätzel, J. Phys. Chem., 88 (1984) 1302.
- [7] K. Sayama, H. Arakwa, J. Chem. Soc., Chem. Commun., (1992) 150.

Acknowledgment

National Aeronautics & Space Administration through Glenn Research Center

U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

Dr. Hironori Arakawa, presently Tokyo University of Science, for providing Ni/NiO_x catalyst