

Florida Solar Energy Center • November 1-4, 2005

Prototype and Simulation Model for a Magnetocaloric Refrigerator

S. Bhansali and M. M. Rahman

University of South Florida

Start Date = June 1, 2002 ~ Planned Completion = Dec. 31, 2006

Prototype and Simulation Model for a Magneto-caloric Refrigerator - S. Bhansali and M.M. Rahman - University of South Florida

Research Goals and Objectives

- Evaluate magneto-caloric refrigeration as a viable process for liquefaction of hydrogen
- Develop simulation models and thermodynamic models
 - Numerical evaluation of a composite microchannel heat exchanger
 - Thermodynamic analysis of a magnetic refrigerator
 - Analysis of a magnetic liquefier for hydrogen and compare it with conventional technology

Develop key components for prototype magnetocaloric cooling system

- Preparation of magnetocaloric materials GdSiGe and its synthesis in different forms with optimal properties
- Design and development of microfabrication processes for prototype microcoolers
- Development of in-situ temperature sensors for accurate temperature measurement
- Demonstration of the microcooler assembly by performing experiments
- Validation of the model with experimental results

Relevance to Current State-of-the-Art

- Competitive to conventional vapor compression refrigeration technology in terms of overall system performance by using magnetocaloric material GdSiGe.
- Miniaturized magnetocaloric cooling system with Si microstructure
- USF has demonstrated cooling at low magnetic fields (1.7 Tesla).

Relevance to NASA

- Magnetic refrigeration can be useful for heat dissipation in a ZBO cryogenic storage vessel.
- Miniaturization of a refrigeration system: a key technology for future pico-satellites
- High cooling capacity: Realizing micro cryo-coolers that can operate at a wide temperature range with a high cooling capacity
- The small size and lightweight magnetic liquefier developed under this project can be useful to re-liquefy hydrogen in cryogenic storage tanks used for transportation and storage of hydrogen for space missions.

Budget, Schedule and Deliverables

Budget

1 Yr(\$200,000), 2Yr(\$109,682), 3 Yr(\$120,000)

Deliverables

- 1. Computer simulation programs in an electronic file
- 2. A prototype MEMS cooling element and its assembly
- 3. Specific process conditions and process recipes
- 4. Final report

Schedule

Time table	2003			2004			2005				2006					
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Numerical computation fo heat transfer coefficient																
Develop a steady state and a transient state simulation model																
Establish magnetocaloric phases in bulk form																
Microfabrication processes for microchannels																
Synthesize required phases for GdSiGe																
High temperature diffusion barrier on Si																
Develop in-situ temperature sensors																
Computational analysis of a large size magnetic cooler																
Analysis of heat transfer in a composite Si-Gd microcooler																
Thermodynamic analysis of a magnetic refrigeration system																
Conceptual design and analysis of a hydrogen liquefaction system																
Assembly and Integration of cooling elements																
Experimental test setup with electromagent device																
Performing cooling test																
Preparation of components such as valves and heat exchangers																
Construct the full cycle of a magnetic refrigerator																
Automatic valve and magnetic control system																
Test magnetic refrigeration system																

Anticipated Technology End Use

Overall integrated technology

- Storage of hydrogen for space missions: zero boil off (ZBO)
- Liquefaction of hydrogen for transportation
- Household refrigerator: environmentally friendly with high efficiency
- Cooling for pico-satellites

Unit technologies

- Design and analysis of micro cooling systems
- Synthesis of magnetocaloric materials
- Temperature sensor: in-situ temperature measurement

Accomplishments and Results (Summary)

Established a computational magnetic cooler model

- Made a computational model of a magnetic cooler
- Analysis of heat transfer in a composite microcooler with trapezoidal channels

Developed magnetocaloric materials

- Developed the processes to synthesize magnetocaloric material (GdSiGe)
- Established high temperature diffusion barrier (AIN/SiO₂) for GdSiGe films on Si

Developed and tested microcooler

- Developed the fabrication processess and fabricated trapezoidal flow channels in Si
- Made the in-situ temperature sensor through deep impurity diffusion
- Accomplished cooling test and showed the feasibility of the microcooler

Designed and analyzed a magnetic refrigerator and liquefaction system

- Analyzed a magnetic refrigeration system
- Made a conceptual design of a hydrogen liquefaction system

Florida Solar Energy Center • November 1-4, 2005

Modeling and simulation of a magnetic microcooler

- The peripheral average heat transfer coefficient and Nusselt number decreases along the length of the channel due to the development of thermal boundary layer.
- For the same channel, Nusselt number increases with Reynolds number.
- For same magnetic field, interface temperature increases as the Reynolds number is decreased.
- Nusselt number remains almost constant for different magnetic fields.

Florida Solar Energy Center • November 1-4, 2005

υ

Tempearature

Transient response analysis of the cooler

0.00 0.0 0.4 0.8 1.2 1.5 1.9 2.3 -2.00 -4.00 -6.00 -8.00 -10.00 -12.00 inlet outlet Z-axis (cm) Magnetic Field 1.0 T 23.26 **Reynolds Number** 337 cm/s Inlet Velocity -11 °C **Initial Temperature** 60% glycol + 40% water Fluid Gd Material

Temperature along center of channel

•Initial conditions (t=0) for the temperature (-11 °C) for the gadolinium slab, silicon, and fluid.

•The simulation shows inlet and exit channel temperatures during magnetization of the Gadolinium while operating for 60 seconds

Florida Solar Energy Center • November 1-4, 2005

Thermodynamic analysis of a magnetic refrigerator

COP (Typical 18 ft ³ refrigerator)					
Magnetic Refrigerator	Commercial Vapor Cycle Refrigerators [2]				
N/A	R134a	R22			
11	2.26	2.29			

[2] Vineyard E.A., 1991, "The alternative refrigerant dilemma for refrigerator-freezers: truth or consequences," ASHRAE Transactions, Vol. 97, Part 2, pp. 955-960.

Florida Solar Energy Center • November 1-4, 2005

Analysis of a magnetic liquefier for hydrogen

- Liquefaction efficiency of the cycle increases as consequence of an increase in the magnetic refrigerator performance.
- The model showed better performance than that showed by other models.
- Magnetic liquefier exhibits a great potential by showing significantly higher efficiency when compared to small and large scale commercial liquefiers for hydrogen.

Florida Solar Energy Center • November 1-4, 2005

Design of refrigerator components

Heat exchanger specifications

Parameter	Range			
Air inlet	85 F			
Air outlet	55 F			
Liquid outlet temp.	278K			
Liquid inlet temp.	273K			
Mass flow rate	1.77 l/min			
Tube OD	0.25 in	0.625 in		
Fin height	0.125 in	1.25 in		
Fin density	5/in	10/in		
Fin thickness	0.3 mm	0.6 mm		
Fin material	Al or Cu			
Tube material	Al or Cu			

Detail for the tube and fin section in the heat exchanger

Magnetic bed specifications

L (m)	W (m)	H (m)
0.18	0.95	0.03
0.2	0.08	0.04
0.22	0.086	0.04

Component	Efficiency [%]	Refrigerator
Evaporator	48.38	Commercial [11]
Condenser	27.8	Commercial [11]
Heat exchanger	12.4	Magnetic
Magnetic bed	53.19	Magnetic

Exergetic efficiency for refrigerator components

Florida Solar Energy Center • November 1-4, 2005

Fabrication of microcooling element

Prototype and Simulation Model for a Magneto-caloric Refrigerator – S. Bhansali and M.M. Rahman – University of South Florida

Florida Solar Energy Center • November 1-4, 2005

Established cooling test equipment

-Established magnetocaloric cooling experiment -Test the prototype microcooling system

Cooling test and measurement

Thermocouples

Gd₅Si₂Ge₂ Block

Microcooler channel size (WxHxL)	300umx150umx1inch		
Channel material	Si (100) wafer, 250um thickness		
MCE material	Gd ₅ Si ₂ Ge ₂ (AMES Lab)		
MCE block	2inch dia x 1/4 inch thickness		
Temp sensor	Diffusion Au @950C		
Testing temp	250 K ~ 280 K		
Electro-Magent field	~1.7 Tesla (Varian V-3700)		

Prototype and Simulation Model for a Magneto-caloric Refrigerator – S. Bhansali and M.M. Rahman – University of Sout Cooler specification

Cooling test of the MCE block at various ambient conditions

- GdSiGe material was immersed into magnetic field
- Measured temperature on the GdSiGe material surface
- Applied magnetic field = 1.7 Tesla

time at initial temperature 263.8K

initial ambient temperatures

Cooling test with microchannel Si wafer

- Channels were made on Si wafer
- Measured temperature at the inlet and outlet ports using thermocouples

Real Wafer Testing with GdSiGe block at Initial Temp = -1

- Anti-freeze fluid
 Inhibited Propylene Glycol : water=50:50
- Applied magnetic field: 1.0 Tesla
- Flow rate: 0.83 ml/sec
- The magnet was turned on after 10 sec
- Initial(t=0) chamber temperature: -1 °C.
- Temperature change: 9 °C (at 30sec)
- * There was a leaking after 30sec.

Researchers and students involved

- 1 Ph.D student: (Shantanu S. Shevade)
- 3 Master students: Bharath Bethala, Cesar F. Hernandez, and Simone Ghirlanda
- 1 Undergraudate student: Carl Adams
- 3 Postdoctoral fellows: Dr. Sangchae Kim, Dr. Luis Rosario and (Dr. Senthil Sambandam)

Summary of publication papers 2005

- 1. S. Shevade, M.M. Rahman and L. Rosario, "Second Law Analysis of a Magnetic Refrigerator," 2005 ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, November 2005.
- 2. S.C. Kim, B.Bethala, S. Ghirlanda, S. Sambandam, S. Bhansali, "Design and Fabrication of a Magnetocaloric Microcooler," ASME International Mechanical Engineering Congress and Exposition, Nov 2005.
- 3. S. N Sambandam, B. Bethala, S. Bhansali, and D. K Sood, "Search for a Suitable Diffusion Barrier Layer for Annealing Films of Gd-Si-Ge Sputter Deposited on Silicon", Surface Coatings and Technology, 2005 (In print)
- 4. S.C. Kim, B. Bethala, S. Ghirlanda, P. Khanna and S. Bhansali, "Characterization of Diffusion Barriers for Gd-Si-Ge Films on Silicon Substrate," 4th International Surface Engineering Congress & Exposition, Aug 2005.
- 5. P.S.C. Rao and M.M. Rahman, "Transient Conjugate Heat Transfer in a Circular Microtube Inside a Rectangular Substrate," AIAA Journal of Thermophysics and Heat Transfer, (In press).
- 6. P.S.C. Rao, M.M. Rahman, and H.M. Soliman, "Numerical Simulation of Steady State Conjugate Heat Transfer in a Circular Microtube Inside a Rectangular Substrate," Numerical Heat Transfer, (In press)
- S.N.Sambandam, B.Bethala, S.Bhansali, D.K.Sood, "Search for a Suitable Diffusion Barrier Layer for Annealing Films of Gd-Si-Ge Sputter Deposited on Silicon, International Conference on Metallurgical Coatings and Thin Films, San Diego, California, May 2005.

2004

- 1. M.M. Rahman and L. Rosario, "Thermodynamic Analysis of Magnetic Refrigerators," Proc. 2004 ASME International Mechanical Engineering Congress and Exposition, Vol. 3, Anaheim, California, November 2004.
- P.S.C. Rao and M.M. Rahman, "Analysis of Steady State Conjugate Heat Transfer in a Circular Microtube Inside a Substrate," Proc. 2004 ASME International Mechanical Engineering Congress and Exposition, Vol. 1, Anaheim, California, November 2004.
- 3. S.N. Sambandam, S. Bhansali, V.R. Bhethanabotla, "Study on magnetocaloric GdSiGe thin films for microcooling applications," TMS Annual Meeting, Charlotte, NC, March 14-18, 2004.
- 4. S.S. Shevade and M.M. Rahman, "Transient Analysis of Microchannel Heat Transfer with Volumetric Heat Generation in the Substrate," Proc. TMS Annual Symposium, Charlotte, North Carolina, March 2004.

2003

- M.M. Rahman and S.S. Shevade, "Development of Microchannel Heat Exchanger for Magnetic Refrigeration Applications," Proc. International Conference on Mechanical Engineering (ICME-2003), Dhaka, Bangladesh, December 2003 (keynote paper).
- M.M. Rahman, S.S. Shevade, and V. Bethanabotla, "Analysis of Transient Heat Transfer in a Microchannel Heat Exchanger During Magnetic Heating of the Substrate Material," Proc. 2003 ASME International Mechanical Engineering Congress and Exposition, Vol. 1, Washington, D.C., November 2003.
- 3. M.M. Rahman and S.S. Shevade, "Microchannel Thermal Management During Volumetric Heating or Cooling," Proc. First International Energy Conversion Engineering Conference, Portsmouth, Virginia, August 2003.

Establish collaborating structure

- AMES Lab, Iowa state university
- Los Alamos Magnet Lab (NHMFL)
- Analytical Instrument Facility, North Carolina State University
- Constellation technology, Co.

Prototype and Simulation Model for a Magneto-caloric Refrigerator - S. Bhansali and M.M. Rahman - University of South Florida

Future Plans

Construct the full cycle of a miniature refrigerator by connecting two microcoolers

Part List	Number
Electromagnet	2
Air-Cooling and	
Dehumifying Coils	2
Heat exhanger	2
Magnetic bed	2
Pump	1
Valve	8

- Compact structure with miniaturized components such as valves and heat exchanger
- Application as a house refrigerator or refrigeration system for hydrogen liquefaction