

## Solar Powered High Temperature Photochemical Water Splitting

### Cunping Huang, Olawale Adebiyi Nazim Muradov, Ali T-Raissi

Florida Solar Energy Center University of Central Florida

Project Start Date: October 1, 2004



# **Research Goals and Objectives**

- Produce hydrogen using resources available in Florida without GHG emissions
- Utilize both solar heat & photonic energy to increase hydrogen production efficiency
- Develop a new thermochemical water splitting cycle that is optimum for solar interface
- Synthesize highly efficient & selective photocatalysts



### **Relevance to Current State-of-the-Art**

- Solar thermochemical splitting of water for hydrogen production is a carbon free process that is presently of great interest to the scientific community
- Thermochemical water splitting cycles have been shown to be more efficient method for hydrogen production from water than those that utilize water electrolysis, high temperature direct splitting or other techniques
- FSEC is developing an innovative cycle that is one of only few true solar-based thermochemical water-splitting cycle in the world

### **Relevance to NASA**

- Local hydrogen production for NASA-KSC using a renewable carbon-free energy source
- □ Technology developed can be used on the Moon & in space



#### Florida Solar Energy Center • November 1-4, 2005

# **Budget, Schedule and Deliverables**

#### **Budget: \$185,000**

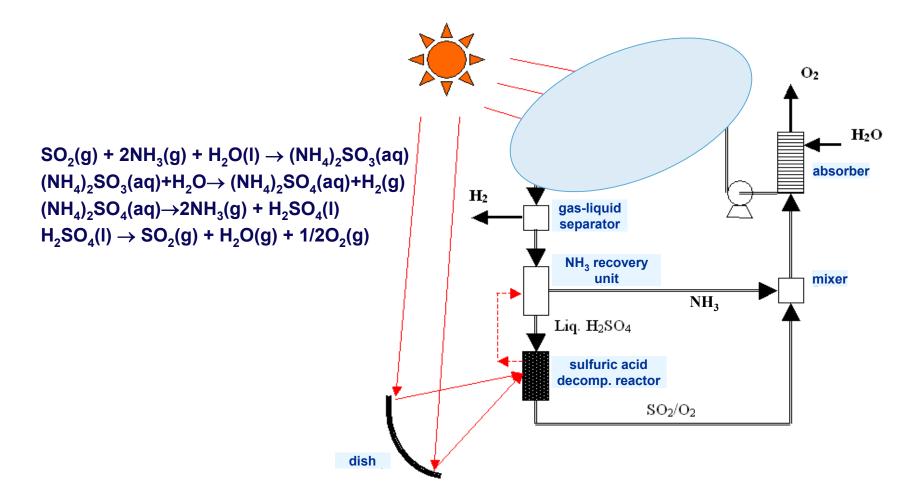
#### **Schedule:**

- 1<sup>st</sup> quarter: Experimental setup & feasibility tests
- 2<sup>nd</sup> quarter: UV light photolytic H<sub>2</sub> production
- 3<sup>rd</sup> quarter: Solar H<sub>2</sub> production
- 4<sup>th</sup> quarter: Photocatalyst screening

#### Deliverables:

- 1 A solar thermochemical process for production of  $H_2$  from  $H_2O$
- 2 Preparation of nanosized photocatalyst particles & photoelectrodes
- 3 development of a method for the photocatalyst preparation
- 4 Process design & optimization




# **Anticipated Technology End Use**

- Local hydrogen production for the NASA Kennedy Space Center
- $\Box$  Inexhaustible H<sub>2</sub> production for hydrogen economy
- Space exploration H<sub>2</sub> production in space and on the Moon & Mars
- Technology developed can be employed for O<sub>2</sub> production
- Technology developed can potentially be used for O<sub>2</sub> production from lunar soil



Florida Solar Energy Center • November 1-4, 2005

### **A New S-A Thermochemical Water Splitting Cycle**





Florida Solar Energy Center • November 1-4, 2005

# UV Photolytic H<sub>2</sub> Production

### **Advantages:**

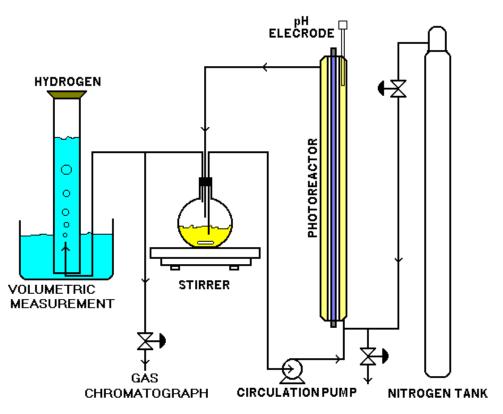
### **Reaction:**

 $(NH_4)_2SO_3 + H_2O + UV \text{ light} \rightarrow (NH_4)_2SO_4 + H_2$ 

□No catalyst is needed

□Higher efficiency

Low cost & less complicated


Potentially applicable in space & on the MoonResults:

□Optimized reaction conditions (temperature, pH, concentration)

Investigated reaction mechanisms

Calculated material balance

Determined  $H_2$  production rate & efficiency (>30% UV to  $H_2$ )





 $S_2O_6^{2-}+$ 

 $\mathbf{k}_1$ 

### **Results: UV Photolytic H<sub>2</sub> Production - Reaction Mechanism & Material Balance**

(I) 
$$H_2O + SO_3^{2-} + h_V = SO_4^{2-} + H_2$$

II) 
$$2SO_3^{2-} = S_2O_6^{2-}$$
  
 $S_2O_6^{2-} + H_2O + h_V = SO_4^{2-} + H_2$ 

$$H_2O + SO_3^{2-} + hv$$

$$H_2O + hv$$

$$H_2O + hv$$

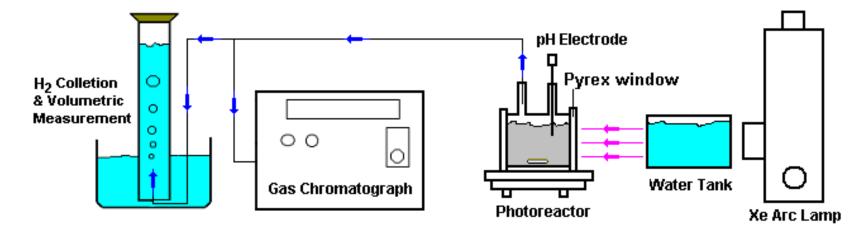
$$SO_4^{2-} + I$$

Η,

| Average      | Component                     | In (mol)                     | Out (mol)                  | Prod/Cons.(mol) | %Difference |
|--------------|-------------------------------|------------------------------|----------------------------|-----------------|-------------|
|              |                               |                              |                            |                 |             |
| Liquid Phase | SO <sub>3</sub> <sup>2-</sup> | 0.040606                     | 0.000000                   | 0.040606        | 0.920415    |
|              | SO4 <sup>2-</sup>             | 0.014432                     | 0.054665                   | 0.040232        |             |
| Gas Phase    | H <sub>2</sub>                | Expected H <sub>2</sub> (mL) | Actual H <sub>2</sub> (mL) | Difference (mL) | % Diff      |
|              |                               | 986.9                        | 909.0                      | 77.9            | 7.9         |



# **Solar Photocatalytic H<sub>2</sub> Production**


#### □ Reaction:

 $(NH_4)_2SO_3 + H_2O + sunlight + catalyst \rightarrow (NH_4)_2SO_4 + H_2$ 

#### Experimental Setup & Photoreactor

Results: Concentration, Temperature, Platinum Loading, Catalyst Lifespan, Catalyst Screening, Kinetics, Process Efficiency





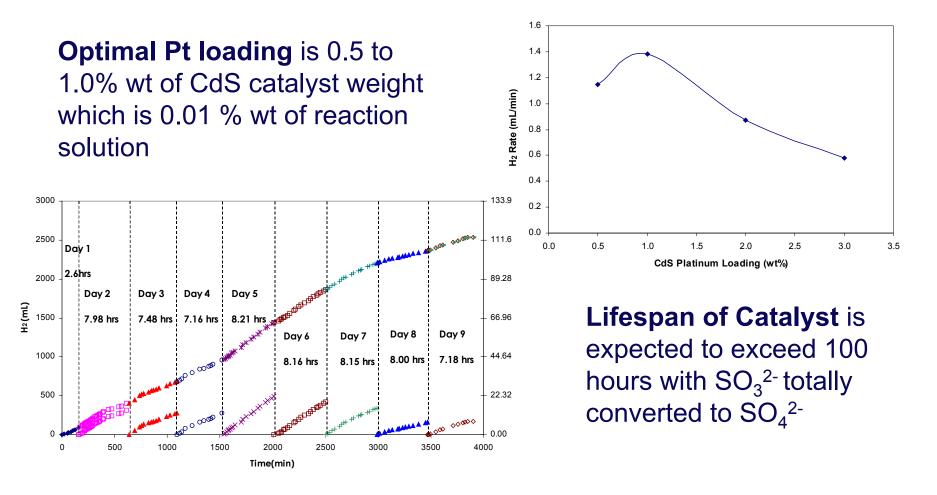


Florida Solar Energy Center • November 1-4, 2005

## **Results - Solar H<sub>2</sub> Production (1)**

1400

**Temperature** has a significant 1200 ---**D**--- 50C affect on  $H_2$  production rate. 1000 Hydrogen (mL) The optimal temperature is in 800 the range of 50 to 70°C. Solar 600 heat can increase reaction rate 400 200 800 100 150 200 250 300 350 0 50 **ТЕМР = 50°С** 700 HYDROGEN (ML) Reaction Time (min) **VOLUME = 250ML** 600 0 432M INITIAL PH = 8.000.866M 500 - - <mark>0</mark>- - - 1.731M 400 **Concentration** of Sulfite solution 300 affects H<sub>2</sub> evolution rate. Optimal 200 concentration is in the range of 100 0.8 to 1.0 M 0 0 50 100 150 200 250 300 350 400 **REACTION TIME (MIN)** 


400

450



Florida Solar Energy Center • November 1-4, 2005

## **Results - Solar H<sub>2</sub> Production (2)**





# **Results - Solar H<sub>2</sub> Production (3)**

#### **Photocatalyst Screening**

□ Platinum doped CdS photocatalyst is highly efficient in converting SO3<sup>2-</sup> to SO4<sup>2-</sup>

□ CdS activity depends strongly upon the Pt dopant size

□ Four techniques were used to prepare the catalysts including synthesizing nanosized Pt particles from chloroplatinic acid solution

Superior techniques involved: 1) sodium borohydride reduction &
polymer protected process for Pt nanoparticle preparation

#### **Process efficiency**

□ For the H<sub>2</sub> production, the light ( $\lambda < 450 \text{ nm}$ ) to hydrogen chemical energy conversion efficiency was about 12%. Efficiency of 25-30% is achievable

□ Solar thermal energy can be utilized to elevate temperatures & increase the reaction rates



### **Future Plans**

- $\hfill\square$  Identify more effective photocatalysts capable of absorbing light with  $\lambda$  in the visible region
- Develop novel photoreactors to increase the photoefficiency of solar light harvesting
- □ Perform closed loop S-NH<sub>3</sub> tests
- Find new techniques for preparing nanosize photocatalysts
- Explore the application of the S-NH<sub>3</sub> cycle for O<sub>2</sub> production
- Seek additional U.S. DOE & other Agency support DOE has already committed \$500k as FY'06 funding



Florida Solar Energy Center • November 1-4, 2005

## **Patents and Publications**

#### Patents:

One provisional patent has been filed and one is under preparation

### **Publications:**

- Cunping Huang, Olawale Adebiyi, Nazim Muradov, Ali T-Raissi, "UV Photolysis of Ammonium Sulfite Aqueous Solution for the Production of Hydrogen," 16<sup>th</sup> World Hydrogen Energy Conference, Lyon, France, June 13-16, 2006
- Ali T-Raissi, Cunping Huang, Nazim Muradov, Olawale Adebiyi, "Production of Hydrogen via a Sulfur-Ammonia Solar Thermochemical Water Splitting Cycle," 16<sup>th</sup> World Hydrogen Energy Conference, Lyon, France, June 13-16, 2006
- Ali T-Raissi, Cunping Huang, Nazim Muradov, Olawale Adebiyi, "Production of Hydrogen by Solar Water Splitting via Hybrid Sulfur-Ammonia Cycle," NHA Annual Meeting 2006, Long Beach, CA, March 12-16, 2006
- Muradov, N., T-Raissi, A., Huang, C., Adebiyi, O., Taylor, R. and Davenport, R., "Solar hybrid water-splitting cycles with photon component," 2<sup>nd</sup> European Hydrogen Energy Conference, Zaragoza, Spain, November 22-25, 2005
- Ali T-Raissi, Nazim Muradov, Cunping Huang, "Solar Hydrogen via High-Temperature Water-Splitting Cycle with Quantum Boost," *International Solar Energy Conference & Journal of Solar Engineering*, Orlando, USA, August 6-12, 2005



Florida Solar Energy Center • November 1-4, 2005

# **Thank You**

# **Questions?**